domingo, 20 de noviembre de 2011

Regla del octeto

La regla del octeto, enunciada en 1917 por Gilbert Newton Lewis, dice que la tendencia de los átomos de los elementos del sistema periódico es completar sus últimos niveles de energía con una cantidad de 8 electrones de tal forma que adquiere una configuración muy estable. Esta configuración es semejante a la de un gas noble, los elementos ubicados al extremo derecho de la tabla periódica. Los gases nobles son elementos electroquímicamente estables, ya que cumplen con la estructura de Lewis, son inertes, es decir que es muy difícil que reaccionen con algún otro elemento. Esta regla es aplicable para la creación de enlaces entre los átomos, la naturaleza de estos enlaces determinará el comportamiento y las propiedades de las moléculas. Estas propiedades dependerán por tanto del tipo de enlace, del número de enlaces por átomo, y de las fuerzas intermoleculares.
Existen diferentes tipos de enlace químico, basados todos ellos, como se ha explicado antes en la estabilidad especial de la configuración electrónica de los gases nobles, tendiendo a rodearse de ocho electrónes en su nivel más externo. Este octeto electrónico puede ser adquirido por un átomo de diferentes maneras:
  • Enlace iónico.
  • Enlace covalente.
  • Enlace metálico.
  • Enlaces intermoleculares.
Es importante saber, que la regla del octeto es una regla práctica aproximada que presenta numerosas excepciones, pero que sirve para predecir el comportamiento de muchas sustancias.
En la figura se muestran los 4 electrones de valencia del carbono, creando dos enlaces covalentes, con los 6 electrones en el último nivel de energía de cada uno de los oxígenos, cuya valencia es 2. La suma de los electrones de cada uno de los átomos son 8, llegando al octeto. Nótese que existen casos de moléculas con átomos que no cumplen el octeto y son estables igualmente.

Estructura de Lewis.

La Estructura de Lewis, o puede ser llamada diagrama de puntomodelo de Lewis o ALDA representación de Lewis, es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir.
Esta representación se usa para saber la cantidad de electrones de valencia de un elemento que interactúan con otros o entre su misma especie, formando enlaces ya sea simples, dobles, o triples y estos se encuentran íntimamente en relación con los enlaces químicos entre las moléculas y su geometría molecular, y la distancia que hay entre cada enlace formado.
Las estructuras de Lewis muestran los diferentes átomos de una determinada molécula usando su símbolo químico y líneas que se trazan entre los átomos que se unen entre sí. En ocasiones, para representar cada enlace, se usan pares de puntos en vez de líneas. Los electrones desapartados (los que no participan en los enlaces) se representan mediante una línea o con un par de puntos, y se colocan alrededor de los átomos a los que pertenece.
Este modelo fue propuesto por Gilbert N. Lewis quien lo introdujo por primera vez en 1916 en su artículo La molécula y el átomo.
Lewis, Gilbert (1875 - 1946).

Enlace metálico

Un enlace metálico es un enlace químico que mantiene unidos los átomos (unión entre núcleos atómicos y los electrones de valencia, que se juntan alrededor de éstos como una nube) de losmetales entre sí. Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas. Se trata de líneas tridimensionales que adquieren estructuras tales como: la típica de empaquetamiento compacto de esferas (hexagonal compacta), cúbica centrada en las caras o la cúbica centrada en el cuerpo. En este tipo de estructura cada átomo metálico está dividido por otros doce átomos (seis en el mismo plano, tres por encima y tres por debajo). Además, debido a la baja electronegatividad que poseen los metales, los electrones de valencia son extraídos de sus orbitales. Este enlace sólo puede estar en sustancias en estado sólido.

Archivo:Metallic bond Cu.svg

Enlace covalente.

Un enlace covalente se produce por el compartimiento de electrones entre dos o más átomos. La diferencia de electronegatividades entre los átomos no es suficientemente grande como para que se efectúe una transferencia de electrones. De esta forma, los dos átomos comparten uno o más pares electrónicos en un nuevo tipo de orbital, denominado orbital molecular. Los enlaces covalentes se suelen producir entre elementos gaseosos o no metales.
A diferencia de lo que pasa en un enlace iónico, en donde se produce la transferencia de electrones de un átomo a otro; en el enlace covalente, los electrones de enlace son compartidos por ambos átomos. En el enlace covalente, los dos átomos no metálicos comparten uno o más electrones, es decir se unen a través de sus electrones en el último orbital, el cual depende del número atómico en cuestión. Entre los dos átomos puede compartirse uno, dos o tres electrones, lo cual dará lugar a la formación de un enlace simple, doble o triple. En la representación de Lewis, estos enlaces pueden representarse por una pequeña línea entre los átomos.

Enlace iónico

La definición química de un enlace iónico es la una unión de átomos que resulta de la presencia de atracción electrostática entre los iones de distinto signo, es decir, uno fuertemente electropositivo (baja energía de ionización) y otro fuertemente electronegativo (alta afinidad electrónica). Eso se da cuando en el enlace, uno de los átomos capta electrones del otro.
Se denomina enlace iónico al enlace químico de dos o más átomos cuando éstos tienen una diferencia de electronegatividad de ΔEN = 2 o mayor. Este tipo de enlace fue propuesto por Walther Kossel en 1916.
En una unión de dos átomos por enlace iónico, un electrón abandona el átomo menos electronegativo y pasa a formar parte de la nube electrónica del más electronegativo. El cloruro de sodio (la sal común) es un ejemplo de enlace iónico: en él se combinan sodio y cloro, perdiendo el primero un electrón que es capturado por el segundo:
NaCl → Na+Cl-
De esta manera forman dos iones de carga contraria: un catión (de carga positiva) y un anión (de carga negativa). La diferencia entre las cargas de los iones provoca entonces una fuerza de interacción electromagnética entre los átomos que los mantiene unidos. El enlace iónico es la unión en la que los elementos involucrados aceptarán o perderán electrones.
En una solución, los enlaces iónicos pueden romperse y se considera entonces que los iones están disociados. Es por eso que una solución fisiológica de cloruro de sodio y agua se marca como: Na+ + Cl-, mientras que los cristales de cloruro de sodio se marcan: Na+Cl-o simplemente NaCl.

sábado, 29 de octubre de 2011

ELECTRÓN DIFERENCIAL.

El electrón diferencial en un átomo es el electrón que hace que un átomo sea diferente del átomo anterior a él en la tabla periódica. Puede también decirse que es el último electrón que se va agregando al construir la tabla periódica siguiendo el orden de AUFAU. En general para los elementos representativos  el electrón diferencial está en el orbital s o en el orbital p, para los elementos de transición el electrón diferencial se encuentra en el orbital d (con excepción para los grupos VIB Y IB) y para los elementos de transición interna el electrón diferencial hasta en el orbital f.

Número cuántico

 NÚMERO CUÁNTICO PRINCIPAL.
En la corteza, los electrones se sitúan siguiendo caminos determinados
llamados orbitales. Cada orbital está definido por tres números cuánticos, que 
determinan el tamaño, la forma y la orientación del orbital.
El número cuántico principal, n, determina el
tamaño del orbital. Puede tomar cualquier valor
natural distinto de cero: n = 1, 2, 3, 4 ... 
Varios orbitales pueden tener el mismo número
cuántico principal, y de hecho lo tienen,
agrupándose en capas. Los orbitales que tienen
el mismo número cuántico principal forman una capa electrónica.
Cuanto mayor sea el número cuántico principal, mayor será el tamaño del
orbital y, a la vez, más lejos del núcleo estará situado.


NÚMERO CUÁNTICO AZIMUTAL.
El número cuántico azimutal, l, indica la forma del orbital, que puede ser
circular, si vale 0, o elíptica, si tiene otro valor.
El valor del número cuántico azimutal depende del valor del número cuántico
principal. Desde 0 a una unidad menos que n. Si el número cuántico principal vale 1, n =  1, el número cuántico azimutal sólo puede valer 0, ya que sus
posibles valores van desde 0 hasta una unidad menos que n.
Si por el contrario el número cuántico principal vale 6, n = 6, el número
cuántico azimutal puede tomar seis valores distintos, desde cero hasta cinco: l
= 0, 1, 2, 3, 4 o 5
A cada valor del número cuántico azimutal le corresponde una forma de
orbital, que se identifica con una letra minúscula:
l Letra
0 s
1 p
2 d
3 f
4 g
Cuanto mayor sea el número cuántico  azimutal, más elíptico y achatado será
el orbital. Cuando vale cero, el orbital es circular. Cuando vale uno, es algo
elíptica. Si dos, es más achatado; si tres, más todavía...                   


NÚMERO CUÁNTICO MAGNÉTICO.
El número cuántico magnético, m, determina la orientación del orbital. Los
valores que puede tomar depende del valor del número cuántico azimutal, m,
variando desde - l hasta + l.
Si el número cuántico azimutal vale 0, l =  0, el número cuántico magnético
sólo puede tomar el valor 0. Así, sólo hay un orbital s.

Si el número cuántico azimutal vale 1, l =  1, el número cuántico magnético
puede tomar los valores -1, 0 y 1, ya que sus posibles valores van desde -  l
hasta l. Hay, por lo tanto, tres orbitales p, ya que si l = 1 el orbital se llama p.
En general, para un valor l, habrá 2·l + 1 orbitales:
l (tipo) Orbitales
0 (s) 1
1 (p) 3
2 (d) 5
3 (f) 7
4 (h) 9
Puesto que el valor de m depende del valor que tenga el número cuántico
azimutal, l, y éste toma valores dependiendo del número cuántico principal, n,
y, por tanto, de la capa electrónica, el número de orbitales variará de una capa
a otra.
En la primera capa electrónica n = 1, por lo tanto l = 0 y, forzosamente, m = 0.
Sólo hay un único orbital, de tipo s.
En la tercera capa electrónica n = 3, de forma que l puede tomar 3 valores: 0,
1, 2. Habrá orbitales s, p, d:
· El orbital s indica que l = 0, por lo que m = 0, sólo hay un orbital s.


· El orbital p significa que l = 1, de forma que m = -1, m = 0 o m = 1. Hay
3 orbitales p.
· Finalmente, si el orbital es d indica que forzosamente l =  2, y, por lo
tanto, m = -2, m = -1, m = 0, m = 1 y m = 2. Hay 5 orbitales d.
En la tercera capa, por tanto, hay 9 orbitales: 1 s, 3 p y 5 d.
El número de orbitales  de cada tipo viene determinado por los valores que
puede tomar el número cuántico magnético, m, y será: 2·l+1. Si l = 0 hay un
único orbital, si l = 4 habrá






 NÚMERO CUÁNTICO DE SPÍN.
Si consideramos el electrón como una pequeña esfera, lo que
no es estrictamente cierto, puede girar en torno a sí misma,
como la Tierra gira ocasionando la noche y el día. Son posibles
dos sentidos de giro, hacia la izquierda o hacia la derecha.
Este giro del electrón sobre sí mismo está indicado por el
número cuántico de espín, que se indica con la letra s. Como
puede tener dos sentidos de giro, el número de espín puede
tener dos valores: ½ y - ½.
Podemos resumir indicando que la corteza electrónica se organiza en capas,
indicadas por el número cuántico principal,  n, que indica su lejanía al núcleo.
Dentro de las capas hay distintos orbitales, especificados por el número
cuántico azimutal, l, y que indica la forma del orbital. El número de orbitales
de cada tipo está dado por el número cuántico magnético, m, que nos señala
la orientación del orbital. Además hay otro número cuántico, de espín,  s, que
sólo puede tomar dos valores e indica el giro del electrón sobre sí mismo

Principio de Aufbau (Regla de las diagonales)


El principio de Aufbau contiene una serie de instrucciones relacionadas a la ubicación de electrones en los orbitales de un átomo. El modelo, formulado por el erudito físico Niels Bohr, recibió el nombre de Aufbau (del alemán Aufbauprinzip: principio de construcción) en vez del nombre del científico. También se conoce popularmente con el nombre de regla del serrucho.
Los orbitales se 'llenan' respetando la regla de Hund, que dice que ningún orbital puede tener dos electrones antes que los restantes orbitales de la misma subcapa tengan al menos uno. Se comienza con el orbital de menor energía.
Primero debe llenarse el orbital 1s (hasta un máximo de dos electrones), esto de acuerdo con el número cuántico l.
Seguido se llena el orbital 2s (también con dos electrones como máximo).
La subcapa 2p tiene tres orbitales degenerados en energía denominados, según su posición tridimensional, 2px, 2py, 2pz. Así, los tres orbitales 2p puede llenarse hasta con seis electrones, dos en cada uno. De nuevo, de acuerdo con la regla de Hund, deben tener todos por lo menos un electrón antes de que alguno llegue a tener dos.
Y así, sucesivamente:
1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6

Erwin Schrödinger (Ecuación de Schrödinger)


Erwin Rudolf Josef Alexander Schrödinger (Erdberg, Viena, Imperio austrohúngaro, 12 de agosto de 1887 – id., 4 de enero de 1961) fue un físico austríaco, nacionalizado irlandés, que realizó importantes contribuciones en los campos de la mecánica cuántica y la termodinámica. Recibió el Premio Nobel de Física en 1933 por haber desarrollado la ecuación de Schrödinger. Tras mantener una larga correspondencia con Albert Einstein propuso el experimento mental del gato de Schrödinger que mostraba las paradojas e interrogantes a los que abocaba la física cuántica.
El desarrollo de la física cuántica a introducido nuevas formas de comprender los fenómenos que rodean el comportamiento de las partículas elementales. Se ha visto que las ondas electromagnéticas poseen cualidades de partículas energéticas, así como los electrones poseen propiedades de ondas, es decir, es posible asignarles una frecuencia angular y una contante de movimiento determinada, pero además es imposible establecer un punto exacto del espacio donde se encuentra la partícula. La fusión definitiva que cuantifica estas ideas, a sido conseguida gracias a estudios científicos desarrollados por Erwin Schrodinger, llamádola ecuación de onda, la cual incluye en comportamiento ondulatorio de las partículas y la fusión de la probabilidad de su ubicación.
La ecuación de Schrödinger es una ecuación de ondas dispersiva. Una función de onda representa un “paquete de ondas”, una suma de muchas ondas “elementales” (planas) cada una propagándose a una velocidad (de fase) diferente, por ello el “paquete” se dispersa. Un función de ondas espacialmente concentrada se ensancha conforme se propaga.








Practica 1.









sábado, 8 de octubre de 2011

LEY DE LAS PROPORCIONES CONSTANTES (Proust)

Joseph-Louis Proust
Joseph-Louis Proust (Angers, 26 de septiembre de 1754 – ídem, 5 de julio de 1826), químico francés y uno de los fundadores de la químicamoderna. Desarrolló la mayor parte de su carrera en España. Simultaneó sus estudios en el Colegio de los Oratorianos con el trabajo en la farmacia paterna, en la cual adquirió sus primeros conocimientos de química y herboristería, llegando a participar en la creación de un jardín botánico en la ciudad.

LEY DE LAS PROPORCIONES CONSTANTES

La ley de las proporciones constantes o ley de las proporciones definidas es una de las leyes estequiométricas, según la cual «Cuando se combinan dos o más elementos para dar un determinado compuesto, siempre lo hacen en una relación de masas constantes». Fue enunciada por Louis Proust, basándose en experimentos que llevó a cabo a principios del siglo XIX por lo que también se conoce como Ley de Proust.

LOUIS PROUST  Y LA LEY DE LAS PROPORCIONES CONSTANTES.

Entre 1794 y 1804, Louis Proust realizó numerosos experimentos en los que estudió la composición de diversos carbonatos de cobre,óxidos de estaño y sulfuros de hierro, descubriendo que la proporción en masa de cada uno de los componentes, por ejemplo carbono,cobre y oxígeno en los carbonatos de cobre, se mantenía constante en el compuesto final, y no adquiría ningún valor intermedio, independientemente de si eran un carbonato natural o artificial, o de las condiciones iniciales de la síntesis. Así, dos compuestos diferírían entre sí en función de las proporciones de elementos básicos, sin apreciarse composiciones intermedias o mixtas, por ejemplo el Cu2CO3,carbonato de cobre (I) y el CuCO3, carbonato de cobre (II). Estas conclusiones le llevaron a enunciar la Ley de las proporciones definidas o constantes, también conocida como la ley de Proust, y que, una vez firmemente aceptada, se convirtió, junto a la Ley de conservación de la masa de Lavoisier y la Ley de las proporciones múltiples de Dalton, es decir, la presencia de proporciones en el esqueleto de la química cuantitativa, la estequiometría química, y abrió el camino al concepto de compuesto químico y al establecimiento de la teoría atómica de Dalton. La ley de Proust contradecía las conclusiones del químico francés Claude Louis Berthollet, quien defendía que las proporciones en la que se combinaban los elementos en un compuesto dependían de las condiciones de su síntesis. Proust logró desacreditar la investigación de Berthollet cuando demostró en 1799 en su laboratorio de Segovia que muchas de las substancias que Berthollet consideraba óxidos puros eran compuestos hidratados, es decir, con moléculas de agua adicionales unidas químicamente. En 1811 el prestigioso químico sueco Jöns Jacob Berzelius apoyó la propuesta de Proust, que fue finalmente aceptada con un amplio consenso. Las ideas de Berthollet no estaban del todo equivocadas, dado que hay numerosas excepciones a la Ley de las proporciones definidas en los que han venido en llamarse compuestos no estequiométricos o bertólidos, y en los que las proporciones entre los distintos elementos varían entre ciertos límites. La causa es la estructura cristalográfica de los compuestos, que aunque tiene una composición ideal, por ejemplo FeO en el óxido de hierro (II) que, debido a los defectos en los cristales como la ausencia de algún tipo de átomos, puede variar su fórmula, por ejemplo reduciendo el hierro a proporciones que se hallan entre Fe0.83O y Fe0.95O. Como contrapartida los compuestos que cumplen la ley de las proporciones definidas se denominan daltónidos, en honor a John Dalton.

viernes, 30 de septiembre de 2011

Orbitales atómicos y sus formas geométricas (S, P, D,F)


Orbitales atómicos
Esta página explica lo que orbitales atómicos se encuentran en una manera que hace que sean comprensibles para los cursos introductorios como el Reino Unido un nivel y sus equivalentes. Se explora s y p orbitales con cierto detalle, incluyendo sus formas y energías. orbitales d se describen sólo en términos de su energía, y los orbitales f sólo reciben una mención de pasada.
¿Qué es un orbital atómico?
Orbitales y órbitas
Cuando un planeta se mueve alrededor del sol, se puede trazar un camino definitivo para que lo que se llama una órbita. A simple vista del átomo es similar y es posible que la foto los electrones orbitando alrededor del núcleo. La verdad es diferente, y los electrones, de hecho, viven en regiones del espacio conocida como orbitales.
Órbitas y orbitales de sonido similar, pero tienen significados muy diferentes.





tabla de Orbitales

Esta tabla muestra las configuraciones orbitales para el verdadero hidrógeno como funciones de onda de hasta 7s, y por lo tanto cubre la configuración electrónica simple para todos los elementos de la tabla periódica hasta el radio gráficos se muestran con ψ -. + y la función de onda se muestra en dos fases diferentes colores (arbitrariamente rojo y azul). El z orbital es el mismo que el orbital 0, pero el x e y p se forman mediante la adopción de combinaciones lineales de las 1 y -1 orbitales (que es por eso que se enumeran en la m = ± 1 etiqueta ).Además, el 1 y -1 p p no tienen la misma forma que el 0 p, ya que son puros armónicos esféricos .
s (l = 0)p (l = 1)d (l = 2)f (l = 3)
m = 0m = 0m = ± 1m = 0m = ± 1m = ± 2m = 0m = ± 1m = ± 2m = ± 3
szxy2xzyzxy2-y 23xz 2yz 2xyzz (x 2-y 2)x (x 2-3y 2)y (3x2-y 2)
n = 1S1M0.png
n = 2S2M0.pngP2M0.pngP2M1.pngP2M-1.png
n = 3S3M0.pngP3M0.pngP3M1.pngP3M-1.pngD3M0.pngD3M1.pngD3M-1.pngD3M2.pngD3M-2.png
n = 4S4M0.pngP4M0.pngP4M1.pngP4M-1.pngD4M0.pngD4M1.pngD4M-1.pngD4M2.pngD4M-2.pngF4M0.pngF4M1.pngF4M-1.pngF4M2.pngF4M-2.pngF4M3.pngF4M-3.png
n = 5S5M0.pngP5M0.pngP5M1.pngP5M-1.pngD5M0.pngD5M1.pngD5M-1.pngD5M2.pngD5M-2.png. . .. . .. . .. . .. . .. . .. . .
n = 6S6M0.pngP6M0.pngP6M1.pngP6M-1.png. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
n = 7S7M0.png. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .


Entender por qué los orbitales atómicos tomar estas formas

Las formas de los orbitales atómicos se puede entender cualitativamente, considerando el caso análogo de ondas estacionarias en un tambor circular . Los varios modos de vibración del disco forman la forma de los orbitales atómicos. De ello se desprende que las formas de los orbitales atómicos son una consecuencia directa de la naturaleza ondulatoria de los electrones.
Un número de modos se muestran a continuación junto con sus números cuánticos. Las funciones de onda análoga del átomo de hidrógeno también se indican.